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Thermal boundary-layer theory near the stagnation 
point in three-dimensional fluctuating flow 

By S. GH0SHAL-f  A N D  A. GHOSHAL 
Department of Mathematics, 

University of Toronto, Toronto 181, Canada 

(Received 19 August 1969 and in revised form 6 February 1970) 

The equations of motion and energy governing a three-dimensional fluctuating 
flow of an incompressible fluid in the vicinity of a stagnation point on a regular 
surface have been integrated analytically. The velocity of the oncoming flow 
relative to the body oscillates in magnitude but not in direction. 

It has also been shown that the analysis of Lighthill for the two-dimensional 
fluctuating flow may be extended to the three-dimensional flow (both chordwise 
and spanwise), namely for each point on the body there is a critical frequency 
w,, such that for frequencies w > w,, the oscillations are to a close approximation 
ordinary 'shear waves', unaffected by the mean flow; the phase advance in the 
skin friction is then 45". For frequencies w < w,, the oscillations may be closely 
approximated by the sum of two parts: one quasi-steady part and the other 
proportional to the acceleration of the oncoming stream. The phase advance in 
the skin friction is then tan-l (w/w,,). 

1. Introduction 
In  connexion with flutter problems, attention has been drawn to the problem 

of a laminar boundary layer in which the mainstream velocity fluctuates in 
magnitude and direction. Lighthill (1954) studied the laminar boundary-layer 
flow of an incompressible fluid on an infinite cylinder with fluctuation in magni- 
tude of the mainstream velocity. Subsequently, similar problems were studied by 
Stuart (1955), Glauert (1956), Watson (1958, 1959), Ghoshal (1966), and others. 
In the present paper an attempt has been made to study the three-dimensional 
heat-conducting fluctuating flow near the stagnation point. Meksyn's (1956) 
asymptotic method has been extended t o  integrate the equations of motion and 
energy for three-dimensional fluctuating flow near the stagnation point on a 
regular surface. To get a physical idea of the results, they have been approxi- 
mated employing Lighthill's (1954) method. For large frequency his analysis 
is employed to integrate the equations of motion and energy. Expressions for 
heat transfer and skin friction are obtained and compared for different con- 
figurations of the body. 

t Present address : Department of Mathematics, Jadavpur Universit,y, Calcutta-32, 
India. 
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2. Basic equations and analysis 
We consider here a fluctuating three-dimensional laminar flow of an incom- 

pressible fluid near the stagnation point of a regular surface. Dissipation effects 
are assumed to be small and the fluid properties to be invariable. The boundary- 
layer equations for the flow with reference to a body-oriented orthogonal system 
of co-ordinates are 

(1) 
au av aw -+-+- = 0, 
ax ay ag 

au au au au au zu au a2u 
-+u-+v-+ w- = -++-+v-+v- 
at ax ay ag at ax ay a 5 2 3  

av av av av av av av a2v 
-+u-+v +w-=-+u-+v-+v- 
at ax ay ag at ax ay ag2’ 

(3) 

where the axes OX and O Y  are chosen along the irrotational velocity com- 
ponents U = U,(1 f e e i w t )  and V = K ( l  +eeiwt) (see Howarth 1951), 5 along the 
local normal (U, = ax, V, = by here). The boundary conditions are 

) ( 5 )  
u(x,  y, 0, t )  = v(x, y, 0, t )  = W(x,  y, 0, t )  = 0 and T ( x ,  y, 0, t )  = T,, 
lim u(x,  y, 6, t )  = U ,  lim v(x,  y, y, t )  = V ,  lim T ( x ,  y, c, t )  = T,. 
6+.0 b+W b+m 

Following Lighthill (1954), we assume a set of solutions of the form 

u = ax[&(z) + e eiwtf ; (z) ] ,  (6) 

where B is small and z = (a/v)*g, f; = df , /dx,  g; = dg,/dz, etc. Now (I) with the 
boundary conditions (5) gives 

w = - (v/a)* [(af, + bg,) + eeiwt(af, + bg,)]. (9) 

Let 

Substituting these quantities in (2), (3) and (4), and equating the terms inde- 
pendent of B, and first order in e from both the sides, we obtain, 
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where c = b/a and u/a = A (0 < c < I). The last equations of (11) and (12) imply 
0 = e ( z )  only. The boundary conditions are 

(13) 

(14) 

1 
1 

fO(0) =f@)  = 9,(0) = g m  = 0, d,(O) = 1, 
limf&) = 1, limgA(z) = 1, limB,(z) = 0, 
2’00 z-fm z 4 m  

fl(0) =f;(o) = Sl(0) = g;(o) = 0, = 0,  
lim f;(z) = 1, limg;(z) = 1, limO,(x) = 0. 
z+ w 2-w #+a 

The steady equations (11) with the boundary conditions (13) have been dis- 
cussed before by many, namely Howarth (1951)’ Hayday & Bowlus (1967). 
Also of interest here is a study of the steady boundary-layer flow at a saddle point 
given by Davey (1961). 

If c = b = 0 the equations for steady and fluctuating flow reduce to the equa- 
tions for the corresponding two-dimensional flow (Lighthill 1954). 

But we get a different type of flow if we take the limit in (1 1) and (12) as c -+ 0. 
The resulting equations are 

(15) 

(16) 

1 f : + f o f ;  =f&h 
go + f o g ;  = 0, 

e;l+P,foe; = 0, 

f’i’+fof;+f&’ = 2(fAf1- l)+ih(.f;- 11, 

S‘l’+fog1;+f190” = %7;- l) ,  
8; + P , [ O ; f o  + OAf,]  = P,iAB,. 

!!I 

1 
It is well known that the equations (15) govern the flow near the stagnation 

point on a circular cylinder, unbounded in the Y direction with its axis inclined 
at an angle ct = tan-l ( & I  V,) to the mainstream. In this caseV is V = V,( 1 + e eiot), 
where V, = constant. It is also evident that the chordwise flow is unaffected by 
the spanwise (g flow) motion in the steady case. The situation illustrates the 
‘independence principle’, which was applied by Sears (1948) and Gortler (1952). 

From (1  6) it is clear that this ‘independent principle’ is also valid in the case of 
fluctuating flow. 

3. Integration of the equations 
To integrate the equations we shall employ a procedure of the type given by 

Meksyn (1  956) and also used by Hayday & Bowlus (1967). The functions fi(z) 
and g,(x) are given by the series 

“ k  OD 

f i (z)  = c ‘ z n  gl(Z) = c -nzn, ( I ,  = 1, = k, = k,from (14)).  (17) n=2n! n=2 n !  

Substituting (17) in the first and second of the equations (16) and equating the 
coefficienks of different powers of z ,  we obtain 

lz  = A ,  (say), 1, = - 2-iA, 1, = iAA,, ...; 
30-2 
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for n 2 4, the coefKcients follow a symmetrical relation, 

8. Ghoshal and A .  CThoshaE 

k,  = B, (say), k,  = - Zc-ih, k, = ihB,, ...; 

for n 3 4 the coefficients follow a symmetrical relation, where 
cn 

an W 

f o ( z )  = -zn and g,(z) = 2 %z7& (a ,  = A,  b, = B ) ;  
n=2 n! n = 2  n! 

an and b, are given by Hayday & Bowlus (1967). 

as a linear system for f" and g", so 
Following Meksyn, we temporarily treat the first and second equations of (16) 

f ' ; (z)  = Ale-F(z)+e-F(z) e F ( 2 ) { ( a ( f i f ; -  1) +ih(f;-  1) - ( f l + c g l ) f { } d z ,  s," 
g';(z) = B,e-"@)+e-F@ eF(2){2c(ghg;- 1)+ih(g;- 1)-(f ,+cg,)%}dz, 

This shows that f'; and g'; may be of the form 

f ' ;  = crFq5,(z) and g'; = e-fl$,(z), 

where $l(z), $,(z) are slowly-varying functions. Equation (20) may Toe regarded 
as the asymptotic solution of the first and second equations of (16). 

yn  is determined from the relation 

expanding both the sides and comparing different powers of z we get 

yo = I ,  = A,, 

7, = 3AA1- CAB, - 2ih + h2, 

y4 = [( 1 + c2) 2A + 3(A1 + CB1) - 6(2A +A,) - h2A1] 

y1 = I, = - 2 - ih, 7, = 14 = iAlh, 

- (2 + ih) ( A  + cB) + ihA (5 - c); 
and similarly from (20) 

8, = k, = B,, 6, = k, = -2c- ih ,  6, = k, = ihB,, 

6, = ~ c B B ,  -Al B - 2ich + h2, 

8, = [( 1 + c2) 2B +- 2c(A1 + CB1) - 12Bc2 - 6c2B1 - h2BJ 
- (2c + hi) ( A  + cB) + Bih( 1 - 5c). 

The velocity field is obtained by integrating (20) as follows: 
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The integration is done by the method of steepest descent. Now let 

whence we get 

m 

F(z)  = 23 2 c,zm = T, 
m=O 

m 

= c [A,/(m+ l ) ] ~ Q ( ~ + l ) ,  
m=O 

(23) 

(24) 

where 

As 

we get (27) 

For a set of values of A ,  B, c, the constants A and B are determined from (27), 
characterizing a fluctuating flow about a mean flow (characterized by A ,  B and c). 

For different types of the main flow (for which c has different values) A ,  B, 
are given by Howarth (1951), Hayday & Bowlus (1967). 

The expressions of c, and A ,  have already been calculated by Hayday & 
Bowlus (1967, p. 420). From the first equation of (26) we obtain 

therefore 

so that d,, is one-third the coefficient of z-l. Since 

7-B(m+l) = z-(m+l)(co + c1 + c2z2 + . . . )-B(m+l), 

d,, is one-third the coefficient of zm in the expression 
m 

(co+c,z+c2z2+ ...)++I) CI YnX" 
n=O n! * 

Similarly, d,, is one-third the coefficient of zm in the expression 

d,, and dZnl, thus calculated, are expressed in terms of A ,  B, A,, B,, c. 

Results 
c = 1, A = B = 1.312 (Howarth 1951) represents the stagnation point flow near a 
body of revolution. Applying Eulers transformations to (27), to calculate A,  
we get 

(31) 
2.394347 + 0.791407ih - 0*030613h2 

= 1.31471 + 0-170697ih- 0.001555h2 ' 
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If w be small the intensity of skin friction 

= p [2]C=o + eeiwtp = 7, + e eiWt [ 1.388 1087, + 0*278586(iw/a) T,,]. (32) 

When w is large 

Velocity distribution. For large-frequency parameter we can approximate the 
equations (2) and (3) according to the theory of differential equations with large 
parameters. This procedure was also employed by Lighthill (1954). 

In (2) and (3)) retaining the terms involving w and the derivatives of highest 
order, we obtain 

These equations are identical to the equation for 'shear waves'. So the flow 
is of shear-wave type similar to that discussed by Lighthill, in the case of a two- 
dimensional flow. These terms dominate at higher frequencies, since viscosity 
does not get time to combat the velocity fluctuations imposed by the external 
pressure gradient fluctuations, except in the 'shear wave' layer, near the wall 
whose thickness if of the order (v/w)*. The solution of the equations is 

Equations (35) and (36) give u1 and w1 for large values of w, whatever the nature 
of the mainstream fluctuations. If U, = U,, V, = V, then the intensity of skin 
friction in X and Y directions are 

[p(au,/X),=, + e ei"~pU,(iw/v)*l, (37) 

Thus it is evident that the amplitude of the skin friction increases with fre- 
quency, and its phase is ahead of that of the fluctuations in the stream by 45". 

Comparing (37) with (32) we find that the phase of the skin-friction fluctuations 
will rise to its ultimate value 45", when 

w 1.388108 w, 
u 0.278586 a - (say). _ -  - (39) 

The amplitude is then, according to (32)) e x  1.3881087, x 29, and that according 
to (37)  is epuU,(w,/v)*, so that their ratio is equal to 

1.399108 x (a /~)929 x 1.315 
= 1.153825 (say R). 

( WO/V)& 

Hence both the phase and amplitude of the skin-friction fluctuations agree 
a t  frequency w,, so in the present case this value of oo may be regarded as the 
boundary between the regions of applicability of (32) and (38) or (37) (because 
c = 1, they are identical). 

For other values of c, namely c = 0, 0.25, 0.50, 0-75, calculations were ca,rried 
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out on the IBM-360 in the Institute of Compute1 Science, University of Toronto. 
At first, calculations were carried out without using Eulers transformation (in 
the case of (32) also), but it was seen that the transformation gave better results 
when dealing with (27). For brevity, only the results applying the transfurmation 
are given here. 

A, and B, are of the form 

(41) 

(42) 

(Al )  + (A2)ih+ (A3)h2+ (A4)ih3+ (A5)h4 
(A6)+(A7) ih+(A8)h2+(A9) ih3  ' 

(A10)+(A11)ih+(A12)h2+(A13)ih3+(A14)h4 
(A6) + (A7)ih + ( A s )  h2 + (A9) ih3 

A,  = 

A ,  = 

The values of A l ,  A2, ..., A14 are given in tables 1 and 2. Table 1 gives the 
values basedonHowarth's (1951) results and table 2 gives those based on Hayday 
& Bowlus (1967). 

C 

0 
0.25 
0.50 
0.75 

C 

0 
0.25 
0-50 
0-75 

C 

0 
0.25 
0.50 
0.75 

C 

0 
0.25 
0.50 
0.75 

A1  

5-868252 
5.122398 
4.429901 
3.864244 

A8 

- 0.003825 
- 0'002542 
-0.001516 
- 0~000890 

B1 

- 0.895697 
- 0.822637 
- 0.729227 
- 0.641658 

B8 
6.222554 
4444373 
3.082338 
2.172920 

A2 

3.639445 
2-978586 
2.360212 
1.878446 

A9 

0.000030 
0*000018 
0.0 0 0 0 0 9 
0-000005 

B2 

- 0.381715 
- 0.344854 
- 0.276132 
- 0.214409 

B9 
- 1.110994 
-0.694814 
- 0.414062 
- 0.252675 

A 3  

- 0.666450 
-0*501689 
- 0.355571 
- 0.231364 

A10 

2.094218 
2.893636 
3.261739 
3-396544 

B3  

0.048833 
0.024720 
0.009172 
0.001955 

B10 

0.212721 
0.131801 
0.072910 
0.039848 

A4 

- 0.037355 
-0.025611 
- 0.016081 
- 0.010014 

A l l  

2.838103 
2.534364 
2.150840 
1.804703 

B4 

0.008983 
0.0 0 6 6 9 4 
0.004162 
0.0 0 2 4 8 0 

B11 

0.005154 
0.002703 
0.001265 
0*000596 

A5  

0.000460 
0.000281 
0.000154 
0.000084 

A12 

- 0.433781 
- 0.303769 
- 0.204574 
- 0.137861 

B5 

0.010139 
0.007407 
0.004551 
0.002693 

B12 

- 0'000630 
- 0.000322 
- 0.000139 
- 0.000058 

A6 

3.173846 
2.7 6 8 9 0 8 
2.388988 
2.075738 

A13 

- 0.036230 
- 0.025090 
- 0.015890 
- 0.009982 

B6 

0.317962 
0.286235 
0.229038 
0.177812 

B13 

0.000005 
0~000002 
0~000001 
0~000000 

A7 

1.248844 
1.012312 
0.779737 
0.596729 

A14 

0.000460 
0.000281 
0-000154 
0-000084 

B7 

59046827 
4.182424 
3.397985 
2.773909 

TABLE 1. Calculations based on the values of A and B as given by Howarth (1951) 

When c+O, as discussed a t  the beginning of the present paper, we obtain, 
when o is small, 7s0 = skin friction chordwise 

= 7a + seiUt[l-4995467, + 0+339966(iw/a) T ~ ] .  (43) 

This gives the skin friction on the circular cylinder near the stagnation point 
when the axis is inclined to  the mainstream at an angle V,/Uo. 
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As in the case c = 1, Lighthill's analysis may be extended to the cases c = 0.0, 
0.25, 0.50, 0.75, both chordwise and spanwise. For small w ,  the chordwise in- 
tensity of skin friction may be given as follows: 

7,,, = 7A+~eiWt[D,7,+D,7,(io/a)], (44) 

where ra, D,, L), are given in table 3. For la,rge w they are given by (37). 

c A1 A2 

0 5.901954 3.665812 
0.25 5.103109 2.962019 
0.50 4.417043 2.349984 
0.75 3.852838 1.870483 

c AS A9 

0 - 0.003871 0.000030 
0.25 - 0.002515 0-000017 
0.50 -0.001503 0.000009 
0.75 - 0.000882 0.000005 

c B1 B2 

0 - 0.907202 - 0.387626 
0.25 - 0.815204 - 0.340779 
0-50 - 0.723890 - 0-273532 
0.75 - 0.636978 - 0.212447 

c B8 B9 

0 6.298179 - 1.128817 
0.25 4.402022 - 0.685645 
0.50 3.852838 - 0.409856 
0.75 2.157632 - 0.250255 

TABLE 2. Calculation based on 

A3 A4  A5  A6 A7 
- 0.672436 - 0.037784 0.000468 3.189692 1'256896 
- 0.497853 - 0-025354 0-000277 2.758177 1.006680 
- 0.355440 - 0.015954 0.000182 2.381783 0.776306 
- 0.249924 - 0,009939 0.000083 2'069717 0,594215 

A10 A11 A12 A13 A14 
2'104826 2.858665 - 0.432705 - 0.036642 0.000486 
2.887812 2.521001 - 0.294452 - 0.024840 0.000277 
3.252269 2.141143 - 0.201054 - 0-015765 0.000152 
3.386218 1'796873 - 0.136290 - 0.009888 0.000083 

B3  B4 B5 B6 B7 
0.049825 0.009151 0.010330 0.332158 5.086876 
0.023867 0.006586 0.007286 0.283087 4.159394 
0-008799 0.004109 0.004493 0.227060 3.382920 
0.001808 0.002450 0.002660 0.176343 2.761657 

B10 B11 B12 B13 

0.215837 0.005260 - 0.000643 0.000005 
0.130129 0.002656 - 0.000317 0.000002 
0.072180 0.001248 -0'000137 0.000001 
0.039466 0.000588 - 0.000057 0.000000 

tho values of A and B as given by Haydcty & Eowlus (1967) 

c 7 A  Dl D2 R 

0.00 1.233 1.499546 0.339966 1.245018 
0.25 1.247 1.483537 0.320270 I .215595 
0.50 1.267 1.463536 0.302078 1.191387 
0.75 1.288 1-445260 0.287094 1.173360 
1.00 1.312 1.388108 0.278586 1.153825 

TABLE 3. The ~ ~ ' s  are given by Howarth (1957) 

Comparing (44) with (37) ,  we find that the phase of the skin-friction fluctuations 
will rise to its ultimate value 45"' when 

Then let the rat,io of the amplitudes of skin friction as given by (44) and (37), 
be H. For each c the value of R is calculated and given in table 3. 



Thermal boundary-layer theory 47 3 

Prom the values of R given in table 3 it is evident that both the phase and 
amplitude of skin-friction fluctuations agree at frequency woz. So as in the case 
c = 1 this value of wox may be regarded as the boundary between the regions of 
applicability af (44) and (37). 

It also may be noted from table 3 that as c+ 1 (from 0.0) the body becomes 
more and more symmetrical, and the quasi-steady and unsteady intensity of skin 
friction continue to diminish. They are minimum when the body is a solid of 
revolution. 

When w is small the spanwise skin friction is given by the following formula 

ry = rB+eeiwt[ElrB+ E2rB (iwla)],  (46) 

where rB, E,, E,, are given in table 4. For large w they are given by (38). 
Lighthill’s analysis may also be applied to spanwise skin frictions. 
From (46) and (38) it is evident that the phase of the skin-friction fluctuations 

will rise to its ultimate value 45O, when 

Let R be the ratio of the amplitudes of fluctuating skin friction as given by 
(46) and (38). For different c the values of R are given in table 4. 

C T B  El E2 R 
0.00 0.570 1.157607 1.113305 0.915119 
0.25 0.805 1.298194 0.662391 1.055694 
0.50 0.998 1.388059 0.508832 1.77565 
0.75 1.164 1.375762 0.342805 1.142740 
1.00 1.312 1.388108 0.278556 1.153825 

TABLE 4. T ~ ’ S  are given by Howarth (1951). 

From the values of R given in table 4 it is clear that both the phase and ampli- 
tude of skin-friction fluctuations agree at frequency woy (different c), so that this 
value of woy may be regarded as the boundary between the regions of applic- 
ability of (46) and (38). 

Therefore, as in the case of chordwise friction, for each point on the body 
there is a critical frequency woy such that for frequencies w > wov, the oscilla- 
tions are to a close approximation ordinary ‘shear waves’, unaffected by the 
main flow; the phase advance in the skin friction is then 4.5’. For frequencies 
w < woy the oscillations may be closely approximated as the sum of two parts: 
one quasi-steady part and the other proportional to the acceleration of the 
oncoming stream. The phase advance in the skin friction is then tan-l(w/woy). 

It may be noted that as c increases both the quasi-steady and unsteady parts 
of the skin friction increase and ultimately become equal to the corresponding 
parts of chordwise frictions when c = 1, i.e. the body becomes a solid of revolution. 



474 S. Ghoshal and A .  Ghoshal 

4. Heat transfer 
Heat transfer may also be obtained as before. 
Integrating the energy equation in (16) we obtain 

which shows that 19; will be of the form 
m 

(48) 

Equation (34) may be regarded as the asymptotic solution of the energy equa- 

8' - - e - ~ ~  T (')$3(~), where $3(2) = (LnZn/n!); 
n=O 

$,(z) is a slowly-varying function. 

tion in (16). 
Let 

as before, substituting in the third equation of (16) and equating different powers 
of z, we obtain hn in terms of h,, A,, B, and I,, namely 

h, = 0, h1 = (unknown), h, = 0,  h, = P,h,ih, 

h, = - P,[h,(A +cB) + Il(Al + cB,)], etc. 
where 

I n  n 8, = 7 2  7 I, = 1, Il = &(O), I, = I, = 0, I, = -IP,(A +cB). 
n=o n. 

Now, the Ln7s are determined from, 

so that 

Lo = h1, L, = h.2 = 0, L, = h, = P,(ih)h,, L3 = -P ,  Il(A1+cBl), 
L, = P, 11{(2+ih)+c(2c+ih))-P,2h2hl, etc. 

Integrating (34), (49) 

Now, 
m $,(z)- a x  = r-8 C H,rim. 

d r  n=O 

As z -+ m,8, --f 0, so that we have 

As before, it  is clear that 3Hm is the coefficient of zm, in the followingproduct: 

Thus, H, are expressed in terms of A ,  B, c, A,, B,. 
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Results 
When G = 1. A = B = 1.312 and P, = 1, 

- 0.574239 - 0.130366ih - 0.003246h2 - O*OOOll?ih3 
h, = 1.728004 + 0.938488ih - 0.155183h2 - 0*008689ih3 * (51) 

If w is small, the heat transfer per unit area 

= h = h, + seiot[0.437888h, - (iw/a) x 0.138408 x h,]. (52) 

For values of c,  namely 0.0, 0.25, 0.50, 0.75, h, may be represented as follows 
(the corresponding values of @(O) are - 0.5718, - 0.6172, -0.6639, - 0.7118 
and - 0.7589 given by Hayday and Bowlus (1967)) 

(53) 
(Bl) +ih(B2) + h2(B3) + ih3(B4) + h4(B5) +ih5(B6) 

The values of B1, B2, B3, ..., B13, are given in tables 1 and 2. When w is 

h - 
- (B7) + ih(B8) + h2(B9) + ih3(B10) + h4(Bll)  + ih5(B12) + h6(B13) ' 

small, the intensity of heat transfer is given by 

h = h, + seiot[H,h, + (iw/a)H,h,], 

where h,, H,, H, are given in table 5. 

C ho HI H2 
0.00 0.5718 0.310383 -0.250416 
0.25 0.6172 0.318680 - 0.205047 
0.50 0.6639 0.323250 - 0.170819 
0.75 0.7118 0'324978 -0.145978 
1.00 0.7589 0.437888 -0.138408 

TABLE 5 

When w is large 
For large-frequency parameter the dominant terms of equation (4) are as follows 
(see Lighthill 1954): 

v awl - iwe ,  = wl-, 360 
P,p ac 

where W = W, + q s  eiwt, (54) 

so that from the equation of continuity an.d (35) and (36) we obtain 

For large w the solution of (54) may be given by (Lighthill 1954): 

el = ( i / w )  n; (ae,jag. (56) 

Equation (56) is valid away from the wall where u,and qare  not changing rapidly. 
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For small y the exponentials in u1 and wl make them change too rapidly, so 
that the approximate solution in ( 5 6 )  is not valid there. But we can rcpresent 8, 
in thc form 1 + <[a8,/a<]6=, on the right side of (54). This is a fair approximation 
near the wall since from (4) we obtain [a2T/~y2] ,= ,  = 0. 

Under this approximation we obtain from (54) 

where P, = vjlc is the Prandtl number. The heat-transfer rate per unit area is 

which shows that the amplitude decreases with frequency and its phase is 
behind that of the mainstream fluctuations by 90". These results differs from the 
results of the skin friction. 
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